Chemical Engineering

Three influential innovators named Stanford Engineering Heroes

Print view
Type: 
Research News

Distinguished Stanford engineers honored for their impact on our lives and the world.

Slug: 
2014 Stanford Engineering Heroes
Short Dek: 
Three influential innovators honored for their impact on our lives and the world.

The architect of the first microprocessor, the co-creator of the first WYSIWYG and a professor who helped transform the field of chemical engineering have been named Stanford Engineering Heroes, a designation that honors professional achievements that have advanced social and economic progress and improved the human condition.

Last modified Tue, 11 Nov, 2014 at 17:34

Stanford chemical engineers borrow technique from petrochemical industry to store solar energy

Print view
Type: 
Research News

Many high school students have zapped water with electricity to make hydrogen and oxygen. To turn that chemical process into a type of battery, researchers adapt ideas from oil refineries.

Slug: 
Cheap Catalyst for Solar Storage
Short Dek: 
Stanford engineers borrow technique from petrochemical industry to store solar energy

Chemical engineers at Stanford have designed a catalyst that could help produce vast quantities of pure hydrogen through electrolysis – the process of passing electricity through water to break hydrogen loose from oxygen in H2O.

Today, pure hydrogen, or H2, is a major commodity chemical that is generally derived from natural gas. Tens of millions of tons of hydrogen are produced each year; industrial hydrogen is important in petroleum refining and fertilizer production.

Last modified Wed, 5 Nov, 2014 at 9:46

Stanford team invents sensor that uses radio waves to detect subtle changes in pressure

Print view
Type: 
Research News

Device is used to monitor brain pressure in lab mice as prelude to possible use with human patients; future applications of this pressure-sensing technology could lead to touch-sensitive “skin” for prosthetic devices.

Slug: 
Wireless sensor measures pressure
Short Dek: 
Sensor uses radio waves to detect subtle changes in pressure

Stanford engineers have invented a wireless pressure sensor that has already been used to measure brain pressure in lab mice with brain injuries.

The underlying technology has such broad potential that it could one day be used to create skin-like materials that can sense pressure, leading to prosthetic devices with the electronic equivalent of a sense of touch.

Last modified Fri, 10 Oct, 2014 at 9:14

Stanford's GCEP awards $10.5 million for research on renewable energy

Print view
Type: 
Research News

Stanford scientists and an international research group receive funding to advance solar cells, batteries, renewable fuels and bioenergy.

Slug: 
Multiple energy projects receive grants
Short Dek: 
GCEP awards foster continued research into renewable energy

The Global Climate and Energy Project (GCEP) at Stanford University has awarded $10.5 million for seven research projects designed to advance a broad range of renewable energy technologies. The funding will be shared by six Stanford research teams and an international group from the United States and Europe.

Last modified Wed, 8 Oct, 2014 at 12:47

Stanford team developing gel-like padding that could help cells survive injection and heal spinal cord injuries

Print view
Type: 
Research News

A team of engineers and scientists is developing a gel to help protect cells from the trauma of being injected into an injury site. The work could help speed cell-based therapies for spinal cord injuries and other types of damage.

Slug: 
Helping Cells Survive Injection
Short Dek: 
Engineers and scientists develop a gel to help protect cells from the trauma of being injected into an injury site.

It is a turbulent and sometimes deadly life for cells injected to heal injuries. The act of being squirted through a thin needle into the site of an injury jostles the delicate cells against each other and against the needle walls. Then, once in the site of injury, they face a biological war zone of chemicals. It's no wonder, then, that treating spinal cord injuries and other damage with injected cells has been a challenge.

Last modified Wed, 17 Sep, 2014 at 11:54

Bioengineering and chemical engineering building at Stanford named for gifts from Ram and Vijay Shriram

Print view
Type: 
Research News

$61 million in support from university trustee and his wife names the Shriram Center for Bioengineering & Chemical Engineering and endows the departmental chair.

Slug: 
Introducing the Shriram Center
Short Dek: 
Bioengineering and chemical engineering building at Stanford named for gifts from Ram and Vijay Shriram

Stanford University will name a new home for bioengineering and chemical engineering in recognition of gifts from university trustee Kavitark "Ram" Shriram and his wife, Vidjealatchoumy "Vijay" Shriram. The couple have provided $57 million in support for the new Shriram Center for Bioengineering & Chemical Engineering, the fourth and final building in the university's new Science and Engineering Quad. The Shrirams also will endow the departmental chair in the Department of Bioengineering, bringing their total philanthropic support in this area to $61 million.

Last modified Tue, 10 Jun, 2014 at 11:08

Stanford ChEM-H: Chemistry, Engineering & Medicine for Human Health

Print view
Type: 
Research News

Given a year to mature, the Institute for Chemical Biology is relaunching under a new name that better reflects its vision of bringing Stanford's unique interdisciplinary culture to bear at a new frontier of chemistry.

Slug: 
Stanford ChEM-H
Short Dek: 
The Institute for Chemical Biology relaunches under a new name.

Last summer Stanford launched the Institute for Chemical Biology as a joint venture of the schools of Medicine, Engineering and Humanities & Sciences with the goal of encouraging interdisciplinary research and training at a new frontier of chemistry, that of human health. Given a year to mature, the institute is relaunching under a new name that better reflects this vision: Stanford ChEM-H.

Last modified Thu, 15 May, 2014 at 9:06

Stanford research reveals new ways to study and control crystallization

Print view
Type: 
Research News

Stanford scientists help create a novel way to do time-lapse studies of crystallization that will lead to more flexible and effective electronic displays, circuits and pharmaceutical drugs.

Slug: 
New Ways to Control Crystallization
Short Dek: 
Stanford scientists' time-lapse studies will lead to improved electronic displays, circuits and drugs.

Sometimes engineers invent something before they fully comprehend why it works. To understand the "why," they must often create new tools and techniques in a virtuous cycle that improves the original invention while also advancing basic scientific knowledge.

Such was the case about two years ago, when Stanford engineers discovered how to make a more efficient type of "strained organic semiconductors" that carry currents faster, a big step toward producing flexible electronic devices that couldn't be built using rigid silicon chips.

Last modified Fri, 18 Apr, 2014 at 10:24

Stanford engineers make flexible carbon nanotube circuits more reliable and efficient

Print view
Type: 
Research News

Researchers invent a process to 'dope' carbon filaments with an additive to improve their electronic performance, paving the way for digital devices that bend.

Slug: 
Improving Flexible Carbon Nanotubes
Short Dek: 
Stanford engineers make flexible carbon nanotube circuits more reliable and efficient.

Engineers would love to create flexible electronic devices, such as e-readers that could be folded to fit into a pocket. One approach involves designing circuits based on electronic fibers known as carbon nanotubes (CNTs) instead of rigid silicon chips.

But reliability is essential. Most silicon chips are based on a type of circuit design that allows them to function flawlessly even when the device experiences power fluctuations. However, it is much more challenging to do so with CNT circuits.

Last modified Tue, 18 Mar, 2014 at 14:28

Newly discovered catalyst could lead to the low-cost, clean production of methanol, scientists say

Print view
Type: 
Research News

Scientists from Stanford, SLAC and Denmark have created a new nickel-gallium catalyst that could some day be used to convert hydrogen and carbon dioxide emissions into methanol, an important industrial chemical and potential fuel.

Slug: 
Catalyst for Cheap, Clean Methanol
Short Dek: 
New nickel-gallium catalyst could convert hydrogen and carbon dioxide emissions into methanol.

An international research team has discovered a potentially clean, low-cost way to convert carbon dioxide into methanol, a key ingredient in the production of plastics, adhesives and solvents, and a promising fuel for transportation.

Last modified Tue, 4 Mar, 2014 at 11:33