Materials Science and Engineering

Rapid charging and draining doesn’t damage lithium ion battery electrodes as much as thought.

Print view
Type: 
Research News

A team including Stanford engineers discovers that the benefits of slow draining and charging may have been overestimated.

Slug: 
New View on Battery "Supercharging"
Short Dek: 
Rapid charging and draining doesn’t damage lithium ion battery electrodes as much as thought.

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers had thought – and that the benefits of slow draining and charging may have been overestimated.

Last modified Mon, 15 Sep, 2014 at 11:32

Paul McIntyre named chair of Materials Science and Engineering

Print view
Type: 
Research News

The professor is an expert on developing inorganic nanostructures for semiconductor and energy applications.

Slug: 
McIntyre to lead Materials Science
Short Dek: 
The professor is an expert on developing inorganic nanostructures for semiconductor and energy applications.

Professor Paul McIntyre, an expert on developing inorganic nanostructures for semiconductor and energy applications, has become chair of the Materials Science and Engineering Department at Stanford University.

Last modified Thu, 11 Sep, 2014 at 10:11

Stanford Team Achieves 'Holy Grail' of Battery Design: A Stable Lithium Anode

Print view
Type: 
Research News

The development could lead to smaller, cheaper and more efficient rechargeable batteries.

Slug: 
'Holy Grail' of Battery Design
Short Dek: 
Stanford Team Develops a Stable Lithium Anode

Engineers across the globe have been racing to design smaller, cheaper and more efficient rechargeable batteries to meet the power storage needs of everything from handheld gadgets to electric cars.

In a paper published today in the journal Nature Nanotechnology, researchers at Stanford University report that they have taken a big step toward accomplishing what battery designers have been trying to do for decades – design a pure lithium anode.

Last modified Tue, 29 Jul, 2014 at 9:41

Stanford team aims to improve storage in batteries used in cellphones, iPods, more

Print view
Type: 
Research News

A team led by Yi Cui, an associate professor of Materials Science and Engineering and at SLAC, is working to make a better battery by making the cathode of sulfur instead of today's lithium-cobalt oxide.

Slug: 
Engineer Leads Search for Better Batteries
Short Dek: 
Sulfur cathode experiments test chemistry beyond conventional lithium-ion.

Tucked in a small laboratory at SLAC National Accelerator Laboratory, a team of engineers and scientists from the Stanford Institute for Materials and Energy Sciences (SIMES) is making and testing new types of lithium-ion batteries. Their goal: move beyond today's lithium-ion to create a battery five times better than those we use now.

Last modified Thu, 17 Jul, 2014 at 12:39

Researchers led by Stanford engineer figure out how to make more efficient fuel cells

Print view
Type: 
Research News

Using high-brilliance X-rays, researchers track the process that fuel cells use to produce electricity, knowledge that will help make large-scale alternative energy power systems more practical and reliable.

Slug: 
'Defects' Improve Fuel Cell
Short Dek: 
Researchers find that atomic irregularities boost fuel cell efficiency.

Solar power and other sources of renewable energy can help combat global warming, but they have a drawback: they don't produce energy as predictably as plants powered by oil, coal or natural gas. Solar panels only produce electricity when the sun is shining, and wind turbines are only productive when the wind is brisk.

Ideally, alternative energy sources would be complemented with massive systems to store and dispense power – think batteries on steroids. Reversible fuel cells have been envisioned as one such storage solution.

Last modified Thu, 17 Jul, 2014 at 14:22

Stanford engineers envision an electronic switch just three atoms thick

Print view
Type: 
Research News

Computer simulation shows how to make a crystal that would toggle like a light switch between conductive and non-conductive structures. This could lead to flexible electronic materials and, for instance, enable a cell phone to be woven into a shirt.

Slug: 
An Electronic Switch 3 Atoms Thick
Short Dek: 
Computer simulation shows how to make a crystal that would toggle like a light switch between conductive and non-conductive structures.

Do not fold, spindle or mutilate. Those instructions were once printed on punch cards that fed data to mainframe computers. Today’s smart phones process more data, but they still weren’t built for being shoved into back pockets.

In the quest to build gadgets that can survive such abuse, engineers have been testing electronic systems based on new materials that are both flexible and switchable – that is, capable of toggling between two electrical states: on-off, one-zero, the binary commands that can program all things digital.

Last modified Mon, 7 Jul, 2014 at 15:26

Storing solar energy in the strangest places

Print view
Type: 
Research News

At a TEDx Stanford talk, Assistant Professor William Chueh discusses how to make solar energy available when and where it's needed.

Slug: 
Storing Solar Energy
Short Dek: 
Assistant Professor William Chueh discusses how to make solar energy available when and where it's needed.

 

William Chueh, an assistant professor in the Materials Science and Engineering Department and a fellow at the Precourt Institute for Energy at Stanford, discusses solar fuels, which can provide long-lasting energy storage and are easy to dispatch on demand. 

Last modified Thu, 26 Jun, 2014 at 17:00

Stanford and MIT engineers find new way to harness waste heat

Print view
Type: 
Research News

Researchers have developed a new battery technology that captures waste heat and converts it into electricity.

Slug: 
New Way to Harness Waste Heat
Short Dek: 
A new battery technology converts waste heat into electricity.

Vast amounts of excess heat are generated by industrial processes and by electric power plants. Researchers around the world have spent decades seeking ways to harness some of this wasted energy. Most such efforts have focused on thermoelectric devices, solid-state materials that can produce electricity from a temperature gradient, but the efficiency of such devices is limited by the availability of materials.

Last modified Thu, 19 Jun, 2014 at 14:14

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells

Print view
Type: 
Research News

In the quest to reduce solar energy costs, Stanford engineers survey how researchers are trying to get more bang per buck inside the silicon crystals where light meets matter to make energy.

Slug: 
Solar-Cell Hall of Mirrors
Short Dek: 
Nanostructures trap photons inside ultrathin solar cells.

In the quest to make sun power more competitive, researchers are designing ultrathin solar cells that cut material costs. At the same time, they’re keeping these thin cells efficient by sculpting their surfaces with photovoltaic nanostructures that behave like a molecular hall of mirrors.

Last modified Mon, 5 May, 2014 at 16:43

Stanford engineers make flexible carbon nanotube circuits more reliable and efficient

Print view
Type: 
Research News

Researchers invent a process to 'dope' carbon filaments with an additive to improve their electronic performance, paving the way for digital devices that bend.

Slug: 
Improving Flexible Carbon Nanotubes
Short Dek: 
Stanford engineers make flexible carbon nanotube circuits more reliable and efficient.

Engineers would love to create flexible electronic devices, such as e-readers that could be folded to fit into a pocket. One approach involves designing circuits based on electronic fibers known as carbon nanotubes (CNTs) instead of rigid silicon chips.

But reliability is essential. Most silicon chips are based on a type of circuit design that allows them to function flawlessly even when the device experiences power fluctuations. However, it is much more challenging to do so with CNT circuits.

Last modified Tue, 18 Mar, 2014 at 15:28