Life Sciences and Healthcare

Stanford researchers take a step toward developing a ‘universal’ flu vaccine

Print view
Type: 
Research Profile

Stanford engineers are working to create a flu vaccine that could be produced more quickly and offer broader protection than what is available today.

Slug: 
Advancements in Flu Protection
Short Dek: 
Stanford engineers working to create a flu vaccine that could offer broader protection than what's available today.

Every year the approach of flu season sets off a medical guessing game with life or death consequences. There are many different strains of flu, and they vary from year to year. So each season authorities must make an educated guess and tell manufacturers which variants of the flu they should produce vaccines against.

Even when this system works, flu-related illnesses can kill 3,000 to 49,000 Americans annually, according to the Centers for Disease Control and Prevention. A bad guess or the unexpected emergence of a virulent strain could send the death toll higher.

Last modified Mon, 21 Jul, 2014 at 15:49

Stanford Bioengineering Assistant Professor Honored by White House

Print view
Type: 
Award

Drew Endy named an Open Science Champion of Change.

Slug: 
Bioengineer Honored by White House
Short Dek: 
Asst. Prof. Drew Endy named a Champion of Change

Drew Endy, a synthetic biologist and assistant professor of bioengineering, has been honored by the White House as part of its Champions of Change Open Science program, which recognizes those who promote and use “open scientific data and publications to accelerate progress and improve our world.”

Last modified Tue, 9 Jul, 2013 at 18:15

Getting CLARITY: Hydrogel process developed at Stanford creates transparent brain

Print view
Type: 
Research News

Stanford bioengineers have transformed an intact, post-mortem mouse brain into a transparent three-dimensional structure that keeps all the fine wiring and molecular structures in place. Known as CLARITY, the technique stands to transform our understanding of the brain and indeed of any biological tissue.

Slug: 
A Clear Mind
Short Dek: 
New hydrogel process creates a transparent brain.

Combining neuroscience and chemical engineering, researchers at Stanford University have developed a process that renders a mouse brain transparent. The postmortem brain remains whole — not sliced or sectioned in any way — with its three-dimensional complexity of fine wiring and molecular structures completely intact and able to be measured and probed with visible light and chemicals.

Last modified Fri, 6 Dec, 2013 at 14:45

President Obama's new $100 million brain research initiative taps several Stanford scientists

Print view
Type: 
Press Release

The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) project, which calls for initial federal funding of $100 million, will make use of several innovative technologies invented by Stanford scientists.

Slug: 
$100 Million for Brain Research
Short Dek: 
Brain research project will make use of several innovative technologies invented by Stanford scientists.

President Barack Obama announced today a bold research initiative aimed at developing new technologies and methods for understanding the human brain. Several Stanford scientists will play critical roles in the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) project, which calls for initial funding of $100 million.

Last modified Wed, 3 Apr, 2013 at 10:19

Biological transistor enables computing within living cells

Print view
Type: 
Research News

A team of Stanford University bioengineers has taken computing beyond mechanics and electronics into the living realm of biology. They have developed a biological transistor made from genetic material — DNA and RNA. The team calls its invention the “transcriptor.”

Slug: 
A Genetic Transistor
Short Dek: 
Bioengineers take computing into the living realm of biology.

When Charles Babbage prototyped the first computing machine in the 19th century, he imagined using mechanical gears and latches to control information. ENIAC, the first modern computer developed in the 1940s, used vacuum tubes and electricity. Today, computers use transistors made from highly engineered semiconducting materials to carry out their logical operations.

Last modified Thu, 28 Mar, 2013 at 11:01

A high-resolution endoscope as thin as a human hair

Print view
Type: 
Research News

Engineers at Stanford have developed a prototype single-fiber endoscope that improves the resolution of these much-sought-after instruments fourfold over existing designs. The advance could lead to an era of needle-thin, minimally invasive endoscopes able to view features out of reach of today’s instruments.

Slug: 
A Hair-thin Endoscope
Short Dek: 
New single-fiber endoscope improves resolution fourfold over existing designs.

Engineers at Stanford have demonstrated a high-resolution endoscope that is as thin as a human hair with a resolution four times better than previous devices of similar design. The so-called micro-endoscope is a significant step forward in high-resolution, minimally invasive bio-imaging with potential applications in research and clinical practice.  Micro-endoscopy could enable new methods in diverse fields ranging from study of the brain to early cancer detection.

Last modified Thu, 28 Mar, 2013 at 13:12

Cafe Scientifique: Is the Genome Useful in Medicine?

Print view

Cafe Scientifique: Is the Genome Useful in Medicine?

– with Stephen Quake, PhD, Professor of Bioengineering and Applied Physics, Stanford University

We are living in the genome age, where the productivity of DNA sequencers is advancing faster than Moore's Law. Dr. Quake will describe the development of the first single molecule DNA sequencer. He will then go on to discuss several applications of high throughput DNA sequencing in medicine, ranging from non-invasive diagnostics to the first clinically annotated human genome.

Date/Time: 
Thursday, March 28, 2013. 7:00 pm - 8:30 pm
Location: 
Stanford Blood Center, 3373 Hillview Avenue, Palo Alto, CA 94304
Sponsors: 
Stanford Blood Center
Contact Info: 
Kevin O'Neill, kvoneill@stanford.edu, 650-725-2540
Admission: 
Free & open to the public

Last modified Mon, 11 Mar, 2013 at 14:32

Stanford scientist joins call for major brain research project

Print view
Type: 
Research News

Stanford Professor Karl Deisseroth joins a super-team of scientists to propose the Brain Activity map, a collaborative initiative akin to the Human Genome Project, to better understand how the brain works.

Slug: 
Scientist Super-Team
Short Dek: 
Stanford professor joins team that will map and control brain activity.

Neuroscience has come a long way since the Roman physician Galen prodded gladiators' head wounds and surmised that the brain, and not the heart, was the home of human intelligence. Nowadays, scientists can create three-dimensional maps of intact neuronal networks, observe individual neurons firing in real time within animals, and even control how those neurons fire using a technique that involves gene therapy and lasers.

Last modified Mon, 11 Mar, 2013 at 11:17

Graduate Fellow Christy Amwake tackles debilitating diseases

Print view
Type: 
Fellowship Profile

Christy Amwake, the Magda Hammam Fellow in the School of Engineering, discusses how her fellowship has freed her to study cures for debilitating diseases.

Slug: 
Tackling Debilitating Diseases
Short Dek: 
Graduate Fellow Christy Amwake discusses how her fellowship has freed her to study cures for debilitating diseases.

Christy Amwake, a PhD candidate in Electrical Engineering, says the Magda Hammam Fellowship is helping her advance the study of regenerative medicine. 

 

Last modified Thu, 18 Apr, 2013 at 16:43

Fellowship student Paurakh Rajbhandary advancing medical imaging

Print view
Type: 
Fellowship Profile

Paurakh Rajbhandary, the Brion Founders Graduate Fellow in the School of Engineering, discusses how he is using his fellowship to study medical imaging.

Slug: 
Graduate Fellow Paurakh Rajbhandary

Paurakh Rajbhandary, who is pursuing his master's degree in Electrical Engineering, says the Brion Founders Graduate Fellowship allowed him to come to Stanford. His hope is that his studies of medical imaging (and CT in particular) will help improve healthcare in his native Nepal.

 

Last modified Thu, 21 Feb, 2013 at 10:59