Skip to main content Skip to secondary navigation
Joe DiSimone
Spotlight

Joseph DeSimone

Professor of Translational Medicine and of
Chemical Engineering
As a chemical engineer, I’ve worked on a lot of projects that seem totally different on the surface

— like new polymerizations in liquid and supercritical carbon dioxide, making nanoparticles for medicine, and inventing a new 3D printing technology. The thread that ties them all together, though, is that they all involve designing new polymer materials.

I’ve always viewed polymer engineering as a kind of toolbox: We create novel chemical processes and use them to help people solve real-world problems. Doing that successfully requires making a lot of connections between fields that are really disparate, and approaching problems from an angle that no one else has considered.

Believe it or not, I get a lot of my inspiration from reading patents. A lot of people think patents stifle innovation, but I’m totally not in that camp. Understanding how people articulate or describe their ideas is really fascinating, and I often see flaws, or limits, or things inventors haven’t thought about when I read patents. You start to realize that maybe they were thinking about something the wrong way, or approaching it myopically through the lens of a single discipline or approach. That’s the opposite of how I work — I like to play in areas where nobody else is playing.

Now that I’m at Stanford, I want to make those sorts of interdisciplinary connections on a large scale. I want to pull the School of Engineering even closer to the School of Medicine, and work on creating innovative drug delivery systems. Stanford is a powerhouse when it comes to making new technology for early detection and diagnosis of disease, and there’s a huge opportunity for growth in drug delivery.

Vaccines, for instance, are one area where Stanford could really shine into the future. Normally, you just shoot a vaccine into the muscle of the arm, but may get something like 50 times more antibody response if you can inject it directly into the skin, which is packed with immune cells. At the moment, my lab is developing microneedles that can deliver vaccines into the skin in a pain-free way, so patients can self-administer them. The approach could make vaccines much more accessible, and might help eradicate diseases like measles — we just have to make the right connections in order to get there.

Related spotlights

Portrait of Samuel King with pink flowers in the background

Samuel King

PhD candidate
Bioengineering
I grew up in a very rural part of Canada and loved the outdoors, so I initially wanted to become a field biologist.
Read Samuel King's story
Portrait of Marigold wearing a black jacket in front of a glass building

Marigold Malinao

PhD candidate
Materials Science and Engineering
I’ve always been inclined toward math and science, but it’s still a bit of a mystery how I chose chemical engineering for my undergraduate studies. I think I just liked being able to find definite answers to questions.
Read Marigold Malinao's story
Undergraduate Varun standing in between two marble spheres in the engineering quad.

Varun Madan

Undergraduate
Computer Science
In some ways you could say honeybees are the reason I’m at Stanford today.
Read Varun Madan's story