Skip to main content Skip to secondary navigation

Widya Mulyasasmita

PhD ’13
To me, engineering is all about using scientific principles to design and improve our natural world.

In high school I took biology, physics, chemistry and mathematics, but there were no courses in engineering.

What eventually got me interested was when we began studying cells and the compartments within cells; seeing how smaller and smaller machineries do magical things to keep life going. Then I learned about the concept of genetic modification, and that humans have the ability to tweak biology. My mind was blown. That was the moment I fell in love with engineering biology.

After studying bioengineering and materials science as an undergraduate, I realized that to become an expert in these fields I had to further my studies, so I applied to the bioengineering PhD program at Stanford, which is an amazing place where different departments and schools cross-pollinate. While there, I enrolled in a program at Stanford Graduate School of Business focusing on innovation and entrepreneurship (now called Ignite). I was drawn to the idea of startups, and forming teams to create something impactful based on academic research. I learned that it takes a strong partnership between technology and business to translate great innovation into the world.

I work in venture capital now, investing in and supporting life science startups. In the life science industry, there’s something known as “The Valley of Death” – the space between where a product or technology has been taken as far as possible by the inventor, but before it’s of interest to large companies or the marketplace. This space is filled with a bustling ensemble of entrepreneurs, scientists, engineers and investors working together to bridge the gap. The synergy found at the intersection of engineering, academia and entrepreneurship has the power to tackle the most challenging problems of our time, including cancer, immune conditions, neurodegenerative diseases like Alzheimer’s and Parkinson’s disease, and infectious diseases like COVID-19. I love finding ways to build bridges between the lab and the marketplace to enable new solutions.

I’d tell anyone coming into engineering not to take what’s available today as an indicator of what will be available in the future. The beauty of engineering is that we’re always developing new tools that can be used to solve real-world problems. So explore – talk to as many kinds and flavors of engineers as possible and see what resonates with you, and continue pulling that thread.

Related spotlights

Portrait of Gregory Zaborski in a blue shirt standing next to a tree.

Gregory Zaborski

PhD candidate
Materials Science and Engineering
I was raised by my Sicilian mother in the small town of Saugerties in upstate New York. I was never very good at school, but I was dedicated to playing all kinds of sports and skateboarding. By high school, I also loved coding. I’d work from a thick book to teach myself to code video games.
Read Gregory Zaborski's story
Portrait of Prof. Sanmi Koyejo sitting outside on a bench

Sanmi Koyejo

Assistant Professor
Computer Science
I’m interested in thinking about artificial intelligence in a rigorous way.
Read Sanmi Koyejo's story
Portrait of Iro Armeni on a balcony in the Science and Engineering Quad.

Iro Armeni

Assistant Professor
Civil & Environmental Engineering
As a kid I would go to construction sites with my dad, a civil engineer, and he’d show me plans for putting reinforcement inside concrete columns.
Read Iro Armeni's story